金沙集团app

首页 > 正文

学术报告:东北财经大学康晓宁教授

金沙集团app:发布时间:2024-09-25文章来源: 浏览次数:

报告题目:A Novel Method for Modeling QQ Data

要:In many scientific areas, data with mixed quantitative and qualitative (QQ) responses are commonly encountered with a large number of predictors. By exploring the association between QQ responses, existing approaches often consider a joint model of them. However, the dependency among predictive variables also provides useful information for fitting QQ responses. Hence in this work, we propose a novel approach to jointly model the QQ responses by incorporating the dependency information of predictors. The proposed method is computationally efficient and provides accurate parameter estimation under a penalized likelihood framework. Moreover, the asymptotically theoretical results of the proposed method are established under some regularity conditions. The performance of the proposed method is examined through simulations and real case studies in material science and genetics.

报告时间:20241012日下午3:30--4:30

报告地点:金沙集团app与数据科学金沙集团app109会议室

主办单位:金沙集团app与数据科学金沙集团app

专家简介:康晓宁,金沙集团app学博士,教授,硕士生导师,应用金沙集团app(商业分析)教研室主任,东北财经大学杰出学者,获“毕业生心目中最有影响力的恩师”称号。本科、硕士毕业于大连理工大学数学系,博士毕业于美国弗吉尼亚理工大学金沙集团app系。主要研究领域包括高维图模型、混合数据建模、模型平均等。曾先后主持和参与国家自然科学基金、教育部人文社科基金、辽宁省自然科学基金等项目。其研究成果已发表在Statistica Sinica, Technometrics, Journal of Multivariate Analysis, International Statistical Review等国际著名期刊上。


关闭 打印责任编辑:李宴美

金沙集团app:友情链接

金沙集团app最新版下载(中国)官方网站-IOS/安卓通用版/手机App下载